The Groundwater and Hydrogeochemistry group studies the hydraulic, chemical, thermal and mechanical processes that take place in porous media from pore to regional scale. The group employs mathematical and numerical approaches as well as laboratory and field scale experiments and sampling methods (using hydraulic, hydro-geochemical and environmental isotope data sampled directly or through specifically designed tests).
The group is active in the development of numerical and mathematical models and modelling techniques for complex porous media processes across spatial and temporal scales, laboratory and field scale experimentation and sampling and data analysis. This includes geospatial data and information management.
Applications include the assessment and management of groundwater resources, groundwater and soil remediation, the management of urban aquifers, the study of emerging pollutants in urban aquifers and artificial recharge facilities, the study of wetlands, seawater intrusion in coastal aquifers, water management in mining operations, civil works, storage of waste and/or its recovery, water decontamination methodologies, the study of the unsaturated zone, the study of the hydro-thermo-mechanical and chemical processes associated with the injection and extraction of fluids at great depth (storage of CO2, storage of nuclear waste, geothermal energy, shale gas, induced seismicity).
- Artificial recharge
- Emerging contaminants in groundwater
- Environmental Geochemistry
- Geochemical modeling
- Geologic carbon storage
- Geomechanics
- Geothermics
- Groundwater modeling and inverse problem
- Hydrogeochemistry
- Hydrogeology in mining areas and civil works
- Induced seismicity
- Low temperature geochemistry
- Multiphase flow in porous media
- Heterogeneity
- Flow and reactive transport in porous media
- Mixing and dispersion in porous media
- Reactive mixing in porous media
- Stochastic modeling and upscaling of porous media processes
- Tools and software development
- Urban hydrogeology
HydroPore
The main objective of the project is to uncover and quantify the mechanisms and laws that govern multiphase flow, mechanical deformation and hydrodynamic transport in permeable media, from the pore to the regional scales. To achieve this goal, HydroPore proposes a multidisciplinary and integrated research strategy that combines a new theoretical upscaling framework with novel experimental protocols and cutting-edge numerical simulation techniques.
Funding amount: 145.200,00 €
Start Date: 01/06/2020 – End Date: 30/04/2025
http://hydropore.es/
E-HYDRO
Desarrollo de una plataforma inteligente de modelización y virtualizacio´n de recursos hídricos
En la actualidad, en la mayoría de los países del mundo es ejercida una presión sin precedentes sobre los recursos hídricos, con una población creciente y un escenario donde el cambio climático supone un factor de condicionalidad añadido a la escasez de estos recursos. Para el año 2030, según estimaciones de la FAO, la diferencia entre demanda y suministro disponible a nivel mundial será del 40%, realidad a la que, lejos de ser ajena, España es un país muy directamente afectado por esta problemática. En este sentido, las estimaciones de riesgo de desertificación de España, estimadas por el Ministerio para la Transición Ecológica y el Reto Demográfico, hacen saltar todas las alarmas, mostrando que 2/3 partes del territorio español se encuentran potencialmente afectadas por este proceso. Es necesario actuar con urgencia, afrontando el problema con nuevas herramientas, con capacidad y con innovación y E-HYDRO está llamado a ser una herramienta clave para ello.
Ante la problemática e imperiosa necesidad existente, identificada igualmente en la inclusión de esta temática dentro de los objetivos del programa Transmisiones 2023, la solución E-HYDRO dará respuesta mediante la dotación de capacidades altamente innovadoras para la Gestión de los Recursos Hídricos. Así, E-HYDRO permitirá una gestión a nivel Cuenca Hidrográfica y su red fluvial asociada, en la que el usuario contará con un Gemelo Digital de la cuenca, asistido por herramientas de virtualización y modelización con motores de inteligencia artificial específicamente desarrollados. E-HYDRO permitirá así consultar, simular y prevenir escenarios reales o potenciales en aras de la asistencia precisa a la toma de decisiones para la mejor gestión del recurso agua.
Funding: AEI/Ministerio de Ciencia, Innovación y Universidades i PLEC2023010215
Start Date: 01/01/2024 – End Date: 31/12/2027
Funding: National Project
https://e-hydro.es/
WATERCLIMATE
Developing tools and strategies to ensure the availability of WATER resources in urban areas under CLIMATE change
Freshwater resources are suffering increasing pressure in urban areas due to several factors, such as climate change and growing population. Currently, Catalonia is facing a severe drought period of more than two years and this situation is especially critical at the Ter-Llobregat water system that is at 27% capacity. Droughts have been a recurrent phenomenon in these catchments in recent years and there is the urgent need to propose alternative water resources such as urban groundwater. Groundwater can be used as strategic resource to tackle the limited availability of surface water resources, meeting peak demands, but it is essential to investigate the groundwater quality, to explore its potential uses including drinking water supply and to forecast potential future scenarios considering the impact of climate change on groundwater resources.
In this context, the aim of WATERCLIMATE is to develop a set of tools and guidelines/strategies to ensure the availability of groundwater resources in urban areas to face climate change. These tools include source apportionment modelling tool (RE-MIX code) as well as numerical modelling, and will allow the better management of water resources improving qualitative and quantitative aspects. These tools will be applied in the Besòs River catchment at different scales but can be used in any other aquifer system of Catalonia and Europe.
Funding: AGAUR and 2023 CLIMA 0101
Start Date: 29/01/2024 – End Date: 28/01/2026
Funding: European Project, National Project
https://swr.csic.es/waterclimate-2/

WATER4MED
Water management strategies and Adaptation acTions undER a global change context FOR the MEDiterranean region
The primary goal of WATER4MED is to provide a robust approach to enhance Mediterranean water governance models by managing water resources sustainably and efficiently, and providing viable alternatives to increase water storage capacity and mitigate floods. Approaches and alternatives to climate change adaptation will be developed and tested in 4 demonstration sites considering the Mediterranean dimension, while their replicability will be assessed in additional Mediterranean sites
Start Date: 01/06/2024 – End Date: 31/05/2027
Funding: International Project
Green-HUGS
Avances para la implantación del almacenamiento subterráneo de hidrogeno para una economía basada en hidrogeno verde: Mezcla y reacción
El objetivo general de Green-HUGS es avanzar en el conocimiento para un almacenamiento geológico de hidrógeno eficiente y seguro y contribuir a una economía de hidrógeno verde y a la transición a una sociedad descarbonizada. El almacenamiento subterráneo masivo de hidrógeno es una potente herramienta para cubrir el desfase entre producción y demanda de energía y salvar las restricciones geográficas típicas de energías renovables como la eólica o solar. Debido a su alta densidad energética, la producción de hidrógeno es clave para cubrir las discrepancias entre la demanda y una producción de energía intermitente. Sin embargo, a causa de su baja densidad, hacen falta grandes volúmenes para satisfacer las necesidades de almacenamiento, del orden de los GWh a Twh, que van mas allá de las que los almacenes convencionales en superficie pueden proveer. Formaciones eológicas tales como acuíferos salinos, cavernas en evaporitas y repositorios de hidrocarburos agotados proveen de la capacidad de almacenamiento necesaria y pueden así servir como almacén para facilitar la economía del hidrógeno. En las últimas dos décadas se ha investigado intensamente el almacenamiento geológico de dióxido de carbono para mitigar sus emisiones a la atmósfera. Sin embargo, el almacenamiento y modos de operación del hidrógeno y CO2 son radicalmente diferentes. Primero, el almacenamiento de hidrógeno requiere inyecciones y extracciones periódicas a un amplio rango de escalas temporales y una alta recuperabilidad y pureza, mientras que el almacenamiento de CO2, persigue almacenamiento a largo plazo idealmente fijado química y físicamente. Segundo, las propiedades físico-químicas del hidrógeno son muy diferentes de las de otros gases que se almacenan en el subsuelo como el dióxido de carbono o el metano.
Referencia: TED2021-129991B-C33
Financiado: El proyecto TED2021-129991B-C33, financiado por MCIN/AEI/10.13039/501100011033 y por la Unión Europea “NextGenerationEU”/PRTR”, siendo TED2021-129991B-C33 la referencia que figura en la resolución de concesión; MCIN el acrónimo del Ministerio de Ciencia e Innovación; AEI el acrónimo de la Agencia Estatal de Investigación; 10.13039/501100011033 el DOI (Digital Object Identifier) de la Agencia; y PRTR el acrónimo del Plan de Recuperación, Transformación y Resiliencia.
Start Date: 01/12/2022 – End Date: 31/03/2025
Funding: European Project, National Project
http://www.iccp.udc.es/gmni/proyectos/GREEN_HUGS/
WATERPOLLUT
Developing strategies for controlling anthropogenic and geogenic pollutants in groundwater
The sustainability of freshwater resources is one of the most important challenges of the Mediterranean region and European Union, constituting a social, economic, and technological challenge, as pressure on these resources is increasing rapidly due to sharp population growth and industrial and agricultural activities. This situation will be especially dramatic in urban areas, which are expected to amass 70% of the world's population by 2050. Moreover, water resources will be also affected by climate change, especially in the south of Europe, where droughts will be more frequent, intense, and long. Combining both chemical and quantitative status assessments show that 29% of the total groundwater body area lacks sufficient capacity to meet the needs of ecosystems or society. Consequently, it is essential to preserve groundwater resources from overexploitation, but also from anthropogenic pollution.
WATERPOLLUT is focused on the newest classes of contaminants (organic contaminants of emerging concern, microplastics, geogenic trace elements and inorganic elements of emerging concern), investigating their presence, their hydrodynamic behaviour and natural attenuation through modelling and identification of their transformation products in groundwater, and also the potential risk associated with the consumption of drinking water produced from contaminated groundwater. In addition, the project aims at identifying pollution sources of emerging contaminants and at distinguishing between anthropogenic and geogenic origins in case of inorganic pollutants. Studies will be conducted in the deltas of two Mediterranean with distinct characteristics.
WATERPOLLUT will consist of two sub-projects: ATTENUATION and GEOTHROP-H2O, which are executed by two research institutes. the Institute of Environmental Assessment and Water Research (IDAEA) and Desertification Research Centre (CIDE) with recognized expertise in water quality analysis, risk assessment of contaminants in human health and environment, the assessment urban groundwater quality and evaluation of the impact of climate change on freshwater resources. To achieve the demanding objectives of this project, subject matter experts from the fields of analytical chemistry, hydrogeochemistry and numerical modelling will team up to design and execute the project in order to generate meaningful quality results. The need for such multidisciplinarity has been the driver for the collaboration between the two Centers coordinating the two subprojects that constitute the project WATERPOLLUT.
Funding: Ministerio de Ciencia, Innovación y Universidades; PID2022-138556OB-C21
Start Date: 01/09/2023 – End Date: 31/08/2026
Funding: National Project
https://waterpollut.csic.es/
REACTANT
Geothermal energy enhance polar and emerging organic contaminant removal in groundwater
The project REACTANT aims at investigating the suitability of using Low Enthalpy Geothermal Energy (LEGE) systems to enhance the removal capacity of contaminants of emerging concern (CECs) in groundwater, specially focusing on polar (highly mobile) organic compounds which pose evidence-based environmental and human health threats. Therefore, REACTANT will contribute to increase the availability of freshwater resources (essential to cover the growing demand) and will encourage the use of renewable energies like geothermal energy (needed to supply clean energy and thus, to mitigate climate change).
Start Date: 01/09/2022 – End Date: 31/08/2025
Funding: National Project
https://reactant.csic.es/
HydroPore II
Coupled processes of multiphase flow, transport, and mechanical deformation in heterogeneous porous and fractured media across spatial and temporal scales.
Multiphase flow, deformation, transport, mixing, and reaction processes in porous and fractured media are fundamental across many scientific and engineering disciplines. Unraveling the underlying mechanisms that control them and developing quantitative and predictive tools are key to understanding a series of engineered technologies and natural phenomena such as the quantification of natural nutrient cycles in soils, the design of effective soil and groundwater remediation strategies, and the development of safe and efficient geoenergy technologies. The inherent heterogeneity of porous and fractured media across scales is at the heart of the limitations of current conceptual models. The main goal of HydroPore II therefore is to determine the fundamental principles underlying coupled flow, transport, reaction, and deformation processes in heterogeneous porous and fractured media. Following an interdisciplinary methodology based on laboratory scale experiments, high resolution numerical simulations, and numerical and analytical upscaling techniques, HydroPore II will identify and quantify the dynamics of two-phase displacements, thermally-driven deformation and fracturing, and solute mixing and chemical reactions under complex flow conditions across scales.
Start Date: 01/09/2023 – End Date: 30/08/2026
Funding: National Project
https://hydropore.es/

MACIN
MAntle/Crust INteraction in the Permo-Carboniferous magmatism of the Catalan Pyrenees
The main objective of MACIN is to develop from a petrological perspective a multidisciplinary research (including structural geology, petrology, geochemistry, isotopic geochemistry, geochronology, and thermodynamic modelling) that aims to understand the tectono-magmatic setting of the Permo-Carboniferous magmatism of the Catalan Pyrenees. The origin of silicic magmas is nowadays under discussion, both the calc-alkaline magma formation, and their rheology and possible emplacement mechanisms. Therefore, the integration of structural and petrological techniques with geochemical and numerical modelling of fossil magma chambers can bring light to understanding of the emplacement mechanisms of silicic batholiths during different stages of orogenic cycles, and how this contributed to the evolution of the continental crust, as well as to the development of the coeval large-scale silicic volcanism and the quantification of mantle and crustal sources in the whole process.
Funding: MICINN. PID2020-114273GB-C2
Researchers: Eduard Saura (UAB), Jordi Cirés (ICGC), Montserrat Torné (GEO3BCN), Carmen López (IGN)
Support: Gerardo Aguirre (UNAM, Mexico), Bruno Scaillet (CNRS, France), Juan Andujar (CNRS, France), Carmen Rodríguez (IACT-CSIC)
The main objective of MACIN is to develop from a petrological perspective a multidisciplinary research (including structural geology, petrology, geochemistry, isotopic geochemistry, geochronology, and thermodynamic modelling) that aims to understand the tectono-magmatic setting of the Permo-Carboniferous magmatism of the Catalan Pyrenees. The origin of silicic magmas is nowadays under discussion, both the calc-alkaline magma formation, and their rheology and possible emplacement mechanisms. Therefore, the integration of structural and petrological techniques with geochemical and numerical modelling of fossil magma chambers can bring light to understanding of the emplacement mechanisms of silicic batholiths during different stages of orogenic cycles, and how this contributed to the evolution of the continental crust, as well as to the development of the coeval large-scale silicic volcanism and the quantification of mantle and crustal sources in the whole process.
Funding: MICINN. PID2020-114273GB-C2
Researchers: Eduard Saura (UAB), Jordi Cirés (ICGC), Montserrat Torné (GEO3BCN), Carmen López (IGN)
Support: Gerardo Aguirre (UNAM, Mexico), Bruno Scaillet (CNRS, France), Juan Andujar (CNRS, France), Carmen Rodríguez (IACT-CSIC)
Start Date: 01/09/2021 – End Date: 31/08/2025
Funding: National Project
KARST
KARST: Predicting flow and transport in complex Karst systems
Karst aquifers are a treasure and a threat: while up to 25% of the world population depends on them for drinking water, they also have capabilities for extremely fast conduction of water and contaminants. In the light of climate change, we need to prepare for extreme flooding and understand the consequences for karst aquifers. Despite their socio-economic importance, decades of research, and high-profile disasters, karst structures and processes remain notoriously difficult to assess. Because of the complexity of karst and its lack of accessibility, the foundations of flow and transport modeling in karst systems are weak. Key phenomena related to extreme events such as flash floods and heavy tails in tracer recovery are still beyond current modeling capabilities.
KARST will establish the next generation of coupled stochastic modeling frameworks to predict karst processes, assess the vulnerability of karst aquifers, and forecast their response to extreme events. Our approach will bridge structures and processes on all scales, far beyond the capabilities of current theories and computer simulations. This will be achieved by targeting three key objec- tives: (i) Identification and quantification of flow and transport dynamics at the conduit scale. (ii) Characterization and modeling of karst network structure at the catchment scale. (iii) Derivation of a new upscaled approach to predict karst processes at different resolution scales. Together, this will result in an unprecedented multiscale modeling framework for the prediction of flow and transport in karst.
Funding: European Union, ERC Synergy Grants 2022 - Ref.: 101071836